A Fluoroalicyclic-Bridged Ditertiary Phosphine Derivative of Iron. The Crystal Structure of $(\pi$ -C_sH_s)Fe(CO)(f_s fos)SnMe_s¹

F.W.B. Einstein and R. Restlvo

Received March 1, 1971

The crystal structure of $(\pi - C_5H_5)Fe(CO)(f_6f_0s)SnMe_3$ $\frac{1}{1}$ *where the ligand, febroary* $\frac{1}{1}$ *is (PPhZ)(CFX) bhere the tigana, jegos, is* $\frac{(r_n)}{2}$ $\frac{C_1}{2}$ $\frac{C_2}{2}$ $\frac{C_3}{2}$ has been determined from three-dimensional X-ray data collected by counter methods. The structure has been refined by full-matrix least-squares techniques (tin, iron and three fluorine atoms with anisotropic *thermal parameters) to a conventional R factor of 8.0 per cent for the 1703 observed reflections. The compound crystallizes in the triclinic space group A1 with four formula units in a cell of dimensions* $a = 10.381$ (1), $b=22.382(4)$, $c=15.459(2)$ \AA , $\alpha=101.48(1)$, $\beta = 92.13(2)$, and $\gamma = 83.26(2)$ °. The hexacoordinate *iron atom is bonded to a carbonyl group, a cyclopenradienyl group, a trimethyltin group and one phospho*rus atom of the f₆fos group. The iron-tin bond length of 2.562(4) Å is slightly longer than the bonded distance in cyclopentadienyldicarbonyliron triphenyltin *(average value of 2.536(3) Å for the Fe-Sn length).* The conformation and structural properties of the five*membered fluorocarbon ring are compared to that found for the chelating* f_6 *fos ligand as found in the anion {cis-Rh(CO)₂CI₂}⁻.*

Introduction

 T reactions of metal carbonyls with fluoroalic with fluoroalic with σ μ ine reactions of metal carbony is with fluoroalicyclic compounds have resulted in a variety of organometallic compounds with unusual structural features.² The fluoroalicyclic ring may be σ -bonded to a metal atom such as in (ffos)Fe($CO₃³$ where ffos is the ligand $(PPh₂)C = C(PPh₂)CF₂CF₂$, or have a tridentate linkage. as in the dimethylarsino complex (flars) $\{Fe(CO)\}\.2$.

Controversy has arisen as to whether the tin-iron bonds⁵ include any multiple bond character. The varied physical techniques available have allowed different structural aspects to be investigated separately
for a range of substituted Sn-Fe species. Infrafor a range of substituted Sn-Fe species. red spectra for the series of complexes $(\pi - C_5H_5)$ -
Fe(CO)₂SnX₃ (X = Cl, Ph, and Me),⁶ far-infrared spec-

 $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ of the compounds $\begin{bmatrix} 1 & 1 \end{bmatrix}$ ra of the compounds $(\pi-\text{C}_5H_5)$ re(CO)₂SnX₃ (X=Ph) and Me),⁷ Mössbauer studies of Fe(CO)₄(Cl)SnX₃ (X= Cl and Br ⁸ and related compounds,⁹ and X-ray crystal structures for the series of complexes $(\pi - C_5H_5)$ - $Fe(Co)_{2}SnX_{3}$ (X = Cl, Br, Ph, and Me)^{10,11} have been reported. Cullen and co-workers⁵ have extended this work by preparing a number of new substitution compounds by replacement of one carbonyl group by phosphine, arsine, and stibine derivatives from the parent compound $(\pi - C_5H_5)Fe(CO)_2SnX_3$ (X = Cl, Ph, and Me). Using Mössbauer, n.m.r. and i.r. data, they have been able to formulate an alternate bonding scheme for the iron-tin bond. $T_{\rm F}$ if $T_{\rm eff}$ is detailed structure with containing $T_{\rm eff}$ structure crystal structure crystal structure $T_{\rm eff}$ is detailed as $T_{\rm eff}$ in detailed as $T_{\rm eff}$ in the crystal structure crystal structure crystal

 $\frac{1 \text{ m}}{6}$ the component of the compound of the compound of $\frac{1 \text{ m}}{6}$ ture of the compound of composition $(\pi - C_5H_5)Fe(CO)$ - $(f₆fos)SnMe₃$, where $f₈fos$ is the ditertiary phosphine ompound, 1,2-bis (diphenylphosphino)hexatiuorocytopentene, which is capable of acting as monodentate, bidentate or tridentate ligand. This structure was undertaken in order to gain information about the bonding between the iron and tin atoms, the iron to f_sfos ligand linkage, as well as the conformation of the f_sfos ligand.

Experimental Section

 $\mathbf{A} = \mathbf{A} \mathbf{A} + \mathbf{C} \mathbf{A} + \mathbf{C$ A sample of the compound $(\pi-C_5H_5)$ re(CO)(t_6 tos)-SnMe₃, whose preparation has been described elsewhere,⁵ was kindly supplied by Dr. W.R. Cullen. A red crystal was cleaved to give a roughly cubic fragment whose maximum dimensions in the directions a, b, and c respectively are $0.22 \times 0.18 \times 0.16$ mm³ and was mounted with the longest dimension along the rotation axis. This single crystal yielded the complete diffraction data (obtained over a period of four
weeks). Weissenberg photographs of the *hkO-hk5* nets

Weissenberg photographs of the $nKU-nK5$ nets using CrKa radiation, together with MoKa precession photographs of the *hOl* and *Okl* zones, showed absences for hk ℓ and $k+\ell=2n+1$. This information combined with the Laue group indicated the space group A₁ or A₁. It was found to be more convenient to work in the A centered cell which was used through-
out our work.

Einstein, Restivo | *Structure of* $(\pi$ *-C₃H₃) Fe (CO) (fdfos)SnMed*

⁽¹⁾ Presented in part at the American Crystallographic Association
feeting, Ottawa, Canada, August, 1970.

(2) W.R. Cullen, « Fluoroalicyclic derivatives of metals and metal-

ids », in Fluorine Chemistry Review, 3, 73 (1

⁽⁷⁾ N.A.D. Carey and H.C. Clark, *Inorg. Chem.*, 1, 94 (1968).

(8) R. Kummer and W.A.G. Graham, *Inorg. Chem.*, 1, 1208 (1968).

(9) C.H.W. Jones and E. Wood, private communication.

(10) R.F. Bryan, *P.T.* Greene. G.A.

Crystal Data. Cell dimensions were determined by least-squares refinement of twenty-four high-angle reflections whose 2θ values were accurately measured at 22°C on the diffractometer. An A - centered triclinic cell of dimensions: $a=10.831(1), b=22.382(4),$ $c=15.459(2)$ Å, $\alpha=101.48(1)$, $\beta=92.13(2)$, and $\gamma=$ 83.26(2)° was obtained with $\lambda = 0.70926$ Å for MoK α_1 ation.

All results reported here are for the A-centered cell with general (fourfold) positions x,y,z ; $-x,-y,-z$; $x, \frac{1}{2} + y, \frac{1}{2} + z$; $-x, \frac{1}{2} - y, \frac{1}{2} - z$, which were used for the the structure determination. $V = 3646.9 \text{ Å}^3$, Dm = 1.64(4) g cm⁻³ in ethanol (Berman density balance determination), $Z=4$, $Dx=1.57$ g cm⁻³, $F(000)=$ *Data Collection.* The crystal was mounted on a

Data Collection. The crystal was mounted on a manual Picker four-circle diffractometer equipped with our own semi-automation so that the weak $(0.5, 3)$ plane was perpendicular to the Φ circle. Reflection intensities for the unique set of data were measured using niobium filtered MoKa radiation and a scintillation detector with pulse-height analysis. Measurements for the inner set of data with $2\theta \leq 31^{\circ}$ were made at a rate of 4° min. using a 1.4° take-off angle with a symmetrical 0-2 θ scan of 1.5° width. Stationary background counts were measured at both ends of the scan (each for half the scan period). The detector was positioned 24 cm from the crystal and the symmetrically variable aperture device was arranged so that the detector was approximately 4.0 mm high and 4.0 mm wide. An outer set of data for the range $31^{\circ} < 20 < 36^{\circ}$ was measured using the stationary crystal-stationary counter method with 22.5 second counts. Background for these outer reflections was estimated in four different directions in reciprocal space and a curve as a function of θ only satisfactorily described the results obtained. Accordingly each reflection was corrected for background and those reflections which were at least 2.0_{σ} above background were considered observed. The two sets of data were initially combined using two scale factors determined by measurement of a number of reflections by both techniques. Of the 2515 reflections measured, 1703 were observed. Three standard reflections were measured every 4 hours and retained a consistency within. \pm 7% over the entire data collection. Lorentz and polarization factors were applied and the structure factors were calculated in the usual manner. Since the linear absorption coefficient with molybdenum radiation is 12.5 cm^{-1} and the maximum difference in the transmission coefficients between extreme cases is of the order of 3% (0.82-0.80), no absorption cor-*Structure Determination.* The combination of vec-

Structure Determination. The combination of vector peaks obtained in the unsharpened three-dimensional Patterson map¹² computed with the inner set of data indicated that the space group is $A\overline{I}$. This choice was confirmed by the successful structure analysis. From this Patterson function, it was possible to assign approximate positions to the tin and iron atoms. Full-

(12) Program used for computation was α FORDAP, Crystallographic unier Summation with optional numeric or alphanumeric plotting and tak searching. α This program was obtained from the University of

(12) Program used for computation was a FORDAP, Crystallographic

matrix least-squares refinement¹³ of these atomic positions and of individual isotropic temperature factors (assuming an initial value of 3.0 Å^3) were carried out yielding an unweighted R_1 value¹⁴ of 0.363. A series of electron-density difference maps¹² based on these atomic positions and other atomic positions as they were revealed in successive maps produced positional parameters for all the atoms of the molecule in the asymmetric unit.

The molecular structure was refined in sections. making use of fixed atom contributions. With all the non-hydrogen atoms allowed appropriate coordinates and isotropic thermal parameters, the structure was refined to an unweighted R_1 of 0.081 for the 1124 observed reflections of the inner set.

Using the full set of collected data, a difference map was computed at this stage and prominent features were interpreted as suggesting that the tin, iron and three of the fluorine atoms were vibrating anisotropically. The R_1 and R_2 values for the 1703 observed reflections of the full set after two cycles of least-squares including anisotropic thermal parameters for these atoms were respectively 0.080 and 0.095 . All reflections received a constant weight $(w=0.040)$ such that the standard deviation of an observation of unit weight was 1.01. The final parameter shifts were all less than 0.20 standard deviations. Thoroughout the refinement, the structure factor agreement was examined as a function of both $|F_o|$ and sin θ . At no time were significant trends in $\sum w(\vert F_o \vert - \vert F_c \vert)^2$ found. A final electron density difference map did not show any residual peaks larger than 0.23 $e/\text{\AA}^3$.

Scattering factors used were those calculated on the Relativistic Dirac-Slater model¹⁵ for the tin atom and self-consistent-field values¹⁶ for the remainder. Full allowance was made for anomalous scattering¹⁷ by the tin and iron atoms.

Figure 1. The molecular structure of $(\pi$ -C_sH_s)Fe(CO)(f_sfos)- $SnMe₁$.

(13) Program « BUCILS, Crystallographic Structure Factor and Full-
atrix Least-Squares. » This version is essentially the same as CUCILS $\frac{0}{44}$ version from the Unive

 $\lceil \sum w(|FQ| - |FC|)^2 / \sum wFQ^2 \rceil$
(15) D.T. Cromer and J.T. Waber, Acta Cryst., 18, 104 (1965).
(16) International Tables for X-ray Crystallography, Vol. III, The

Anisotropic thermal parameters. The form of the anisotropic ellipsoid is

 $exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2 \beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$

^a Standard deviations of the least significant figures are given in parentheses here and in subsequent tables.

The final atomic positions and their standard de- μ iations are given in Table I, and the observed and calculated structure factors are given in Table II; F_{calc} is given the sign of the real component and the magnitude of the structure amplitude.

Discussion

Description of Structure. The compound, $(\pi - C_5$ -

 $H_sFe(CO)(f_sfos)SnMe₃$, whose configuration is shown in Figure 1 consists of discrete molecules arranged in the A-centered triclinic unit cell (Figure 2) such that one molecule comprises the asymmetric unit. The iron atom is bonded to a carbonyl group, a cyclopentadienyl group, a trimethyltin group and one phosphorus atom of the f_6 fos gorup. It appears that the molecule may be derived by direct substitution of the f₆fos ligand for one carbonyl group in the parent compound, $(\pi - C_5H_5)Fe(CO)_2SnMe_3$.

Einstein, Restivo | Structure of $(\pi$ -C_sH_s) Fe(CO)(f_{of}os)SnMe,

504

Table III. (Continued)

Interatomic bond lengths and angles are given as IIII. The D.M.S. and digits are given as Table III. The R.M.S. amplitudes of vibration of those atoms refined anisotropically are listed in Table IV. The angles between the principal axis of vibrav. The angles between the principal axis of vibration of the tin atom and the vector formed between the tin and iron atoms is 30°. This would indicate that the direction of least motion is approximately parallel to the tin-iron bond. This not the case for the iron atom where the corresponding angle is 62° However, the iron atom has significantly smaller amplitudes of vibration than the tin atom and its vibration is nearly isotropic. This would suggest that the most appropriate correction for thermal motion would $\frac{1}{2}$ appropriate correction for the indicate model would ssume the the atom to κ flue κ . On the from atom ville a corrected bond distance of $2.500 \, \text{A}$. Trows \mathcal{L} , since this correction is small and not important to our arguments, the uncorrected Sn-Fe length of 2.562(4) Å will be used throughout this discussion.

The Trimethyltin Group. The mean Sn–CH₃ bond

(18) W.R. Busing and H.A. Levy, *Acto Cryst.,* **17, 142 (1964).**

 $\ddot{}$ and $\ddot{}$ and $\ddot{}$ and $\ddot{}$ are averaged than the average than the average than the average than the average the aver istance of $2.14(3)$ A is slightly shorter than the average 2.18 Å observed for tetramethyltin and trimethyltin halides,¹⁹ but falls within the range of lengths found in other tin compounds as summarised by Schempler.²⁰ T_{c} tim-carbon bond distance in the compound un-compound un

The tin-carbon bond distance in the compound un der study is longer than the mean values $2.07(6)$ Å (cation) and $2.11(5)$ Å anion found for the Sn-C cation) and 2.11(5) A anion found for the sin-C onds in $\{Me_2\}$ NC, refpyridy $\{Me_2\}$ NC, $\{Me_2\}$ NC, $\{Me_1\}$ htter compound it was argued from second-order ybridisation considerations, $\frac{u}{c}$ that there is maximum -character in the Sn--C bonds. By an analogous iterpretation of "Sn and r re Mossbauer spectra as well as proton n.m.r. spectra, Cullen and co-workers⁵ report a decrease in s-character in the Sn-C bonds in $(\pi - C_5H_5)Fe(CO)(f_6f_0s)SnMe_3$ and related compounds.

(19) R.D. Gorsich, *J. Amer. Chem. Soc.*, 84, 2486 (1962).
(20) E.O. Schlemper, *Inorg. Chem., 11, 2012* (1967).
(21) F.W.B. Einstein and B.R. Penfold, *J. Chem. Soc.* (A), 3019

⁽²²⁾ H.A. Bent, *J. Inorg. Nuclear Chem., 19,* **43 (1961) and H.A. ***Bent*.

igure 2. The crystal struct

The tin atom has an approximate tetrahedral en-The tin atom has an approximate tetrahedral environment consisting of three methyl groups and a fourth position occupied by the iron atom. The inter tin -carbon bond angles average to $102.3(12)$ ° which is reduced below the regular tetrahedral value. The average Fe-Sn-C angle is correspondingly increased to $115.9(9)$ °. These angles are similar to values reported for compounds of the type $(\pi - C_5H_5)Fe(CO)$ - $\text{SnX}_3^{10,11}$ where $\bar{X} = \text{Cl}$, Br, or Ph as shown in Table V. Cullen and co-workers⁵ have suggested that an imbalance in the p-orbital charge density at the tin atom would result in a distortion from tetrahedral enironment (this would imply¹² that the s-character as increased at the tin atom). However, this distortion may also be partly due to the different substients attached to the fin atom. As seen from Table pound $R = Sn - X$ (and $X - Sn - X$) angles for the compound $(\pi - C_5H_5)Fe(CO)_2SnCl_3$ of 119.2(1)° (and 98.31 (1) are slightly larger (and smaller) than the correconding angles of $115.9(9)$ (and $102.3(12^{\circ})$ for the compound $(\pi - C_5H_5)Fe(CO)(f_6f_0s)SnMe_3$. This would indicate that there is more s-character in the Sn-Fe bond in the former compound where a shorter bond has been observed. Certainly, the strongest tendency for a π -inductive effect would occur with the -SnCl₃ derivative where the more electronegative groups would make the d-orbitals of the tin atom more accessible to π -bonding²³ and would pre-

(23) W. Jetz, P.B. Simons, J.A.J. Thomson, and W.A. Graham, *Inorg.* Chem., 5, 2217 (1966).

sent an alternative argument for a shorter bond for ent an alternative argu

The Geometry Around the Iron Atom. The confi-The Geometry Around the Iron Atom. The configuration about the iron atom may be described as distorted octahedral (or tetrahedral) depending on the description of the π -bonding linkage to the cyclopentadienyl ring. The angles subtended at the iron atom by the covalently bonded atoms average 92.2 (10)° which would suggest a pseudo-octahedral geometry about the iron atom. Attainment of an inert gas configuration is still possible if, as is customary. the π -cyclopentadienyl ligand is considered tridentate, and then the complex may be regarded as a d^7 Fe^r derivative. If a "single bond" is drawn from the iron atom to the centroid of the ring, an approximate tetrahedral ararngement results. However, the average angle subtended at the iron atom by the centroid position is 123.1(10)° indicating considerable distor-
tion.

The Iron-Tin Interaction. As noted by Graham The Iron-Tin Interaction. As noted by Graham and co-workers, x^3 it has been customary to interpret bond shortening relative to single bond radii as indicative of multiple bond character. An appropriate by a lent radius of tin may be taken as $1.39A$, which half the Sn-Sn distance in β Sn(Ph)_{2{6} $\frac{1}{2}$ No similar distance could be found for iron. The unbridged Fe-Fe linkage of mean 2.67Å reported in Fe₃(CO)₁₂²⁵ appears to be a long bond. While the single bond radii for low oxidation transition metals are in consi r able doubt, using Pauling's single bond metallic adius of 1.17A for iron, \degree and the above mentioned alue for tin, then the Fe-Sn bond length of $2.562(4)$ A in $\pi(-C_5H_5)Fe(CO)$ (f₆fos)SnMe₃ is not significantly different from the sum of the covalent radii (2.57 Å) suggesting a single covalent bond.

gure 3. View of the molecular conformation down the ν -Fe axis. The dotted line represents the projection of a ector from th

 T bond distance in (7c--CsHs)Fe- \sim The Fe-Sn bond distance in $(\pi$ -C₅H₅)Fe(CO)(t_6 fos) SnMe₃ is significantly longer ($p < 0.01$)²⁷ than the mean value of 2.536(3)Å found in the compound (π -C_SH_S)

(24) D.H. Oslon and R.E. Rundle, Acta Cryst., 16, 419 (1963).
(25) C.H. Wei and L.F. Dahl, *J. Amer. Chem. Soc.*, 91, 135 (1969).
(26) L. Pauling, « Nature of Chemical Bond », Cornell Univ. Press, hace, 37d edn., 417 (196

Einstein, Restivo | *Structure of* $(\pi\text{-}C_sH_s)Fe(CO)(f_s f \circ s)SnMe$

Table III. (Continued)

The quoted value is an interatomic distance averaged over thermal motion with the first atom assumed to ride on the ϵ cond. This correction was applied according to a model used by W.R. gram, « ORFFE, A fortran crystallographic function and error program. »

 $\mathcal{L}(2+)-\mathcal{L}(2+), \mathcal{N}$

Table IV. Root-Mean-Square Amplitudes of Vibration (A) along axes of the thermal ellipsoids.

Atom	Principal axis	Axis	Axis 2
Sn(1)	0.213(3)	0.254(3)	0.285(3)
Fe(2)	0.203(6)	0.240(6)	0.252(6)
F(7)	0.18(3)	0.30(2)	0.48(2)
F(8)	0.24(2)	0.32(2)	0.42(2)
F(9)	0.22(2)	0.27(2)	0.43(2)

Table V. A comparison of average molecular dimensions between the parent compound $(\pi-C_5H_5)Fe(CO_2SnX_3(A))$ and $(\pi - C_5H_5)Fe(CO)(f_6f_0s)SnX_3(B).$ B

 $Fe(CO)₂SnPh₃$.¹⁰ To the author's knowledge, no structural data has been reported for the Fe-Sn bond in the parent compound, $(\pi - C_5H_5)Fe(CO)_2SnMe_3$. The former comparison appears to be a valid one if one takes into account other structural information. Identical values were obtained for the Mn-Sn bond in $Mn(CO)_{5}SnMe_{3}$ and $Mn(CO)_{5}SnPh_{3}^{28}$ Moreover, the $M-P$ distance in complexes containing the f₄fos ligand appears to be similar to other phosphine deriva*zives.* The Rh-P distance in $\{Rh(f_6f_0s)_2\}^+$ $\{cis-Rh\}$ $(CO_2Cl_2$ ²⁹ of mean value 2.291(6) A is not significantly different from the average 2.323(8) Å found in $HRh(PPh₃)₃CO³⁰$

In the series of compounds $(\pi C_5H_5)Fe(CO)_2Sn-X_3$,^{10,11} different conformations about the Fe⁻Sn bond

(29) F.W.B. Einstein and C. Hampton, *Can J. Chem.*, 49, 1901 (1971).

The orthogonal system of axes has X long the a-axis, y in the (a,b) plane and Z along the c^* -axis. Unit weights were ed for all atoms forming the plane. All planes were calculated by « Program Meanplane, Calculation of weighted mean
anes through atom groups, also atom deviations », written by M.E. Pippy and F.R. Ahmed at the National Res

 \mathbf{a} have been found. A comparison of the conformation of the conformation of the conforaxis have been found. A comparison of the conformation shown in Figure 3 with values for the parent compound $(\pi C_5H_5)Fe(CO_2SnX_3$ reveals that the conformation of the compound under study differs quite significantly. Bryan and coworkers^{10,11} have suggested that substantial free rotation about the Fe-Sn bond is indicated and that this would be consistent with σ -bond formation which we propose as an adequate description of the Fe-Sn bond in $(\pi - C_5H_5)$ Fe-
(CO)(f₆fos)SnMe₃. However, conformital restric-However, conformital restriction of rotation about the Sn-Fe bond may be due to steric factors rather than π -bond character, since, for a molecule of this type, the degenerate d--orbitals involved could provide a π -bond with no significant barrier to rotation.

The Iron-Carbon System. As was found for (z-Cs-I he fron-Carbon System. As was found for $(\pi-\mathcal{C}_5$ s)Fe(CO)₂SnPh₃, the Fe–C distance in the carbonyl system for the molecule $(\pi - C_5H_5)Fe(CO)(f_6f_0s)SnMe_3$ is also shorter than normal. An examination of the Fe-C distances in the cyclopentadienyl rings for the compounds quoted in Table V shows that they are all longer than usual but are internally consistent (average $2.10(3)$ Å). However, the iron to ring carbon distances are slightly shorter than the average value, 2.12 Å, found in double-ring complexes such as $\{\pi C_5H_5)Fe(CO)_3\text{G}^{31}$

The Fe-C and C-O distances are respectively shorter and longer in $(\pi - C_sH_s)Fe(CO)(f_s \cos)SnMe_3$ than
the similar distances in $(\pi - C_sH_s)Fe(CO)$. SnPh,. This the similar distances in $(\pi - C_5H_5)Fe(CO)_2SnPh_3$. comparison should be treated with caution owing to the comparatively poor precision of the carbon cordinates for the former compound. The slightly gher carbonyl stretching frequency for $(\pi - C_5H_5)$ re- $(CO)(f₆f_{0s})SnPh₃$ (1931 $cm⁻¹$ broad in cyclohexane solution)¹⁰ as compared with $(\pi - C_5H_5)Fe(CO)(f_6f_0s)$ -SnMe₃ (1923 cm⁻¹)¹⁵ supports a stronger C-O bond in the former compound. Although the higher car-
bonyl stretching frequencies for the compounds (π -

 r_sH_5)Fe(CO)₂SnX₃ (X = Ph or Me) having been measured in different solvents (CHCl₃ and CS_2 respectively), weakens arguments involving direct comparisons, it might be inferred that the Fe-(CO) bond should be stronger in $(\pi$ -C₅H₅)Fe(CO)(f₆fos)SnMe₃.

 $\frac{1}{2}$

The fdfos Ligand. It is interesting to compare the The $f₆f₀s$ Ligand. It is interesting to compare the bonding arrangement of the $f₆$ fos group in a system which could be either monodentate, bidentate or tridentate. In the compound, $(\pi - C_5H_5)Fe(CO)(6.60)Sn$ Me₃, the f₆fos ligand is attached to the iron atom by a monodentate linkage which appears to have occurred due to the steric restrictions imposed by the bulky phenyl groups « propeller » arrangement about the phosphorus atoms together with the hindrance provided by the fluorocarbon bridging system. In this compound, the P-P separation is $3.60(1)$ Å, as compared to a value of 3.08 Å found in the compound, f_6 fosFe- SO_2 ² In the compound $\text{Rh}(F_6$ tos)₂⁺ $\text{Cis-Rh}(CO)_2$ d_2 where the t_6 to group complexes with the rhodium atom to give a bidentate linkage, the $P-P$ bite is much shorter, $3.111(8)$ Å. This large change (0.5) A) or flexing of the PCCP system in going from a mono- to bi-dentate systems should encourage a more cautious attitude in discussions involving bite restrictions in chelating species.

The five-membered fluorocarbon ring is in an envelope conformation in these two compounds. The ean plane through four of the ring carbon atoms tabulated in Table VI. The atom, $C(17)$, is signal ficantly puckered out of this plane $(0.37(3)$ Å).

The mean phosphorus-carbon bond length is 1.85 (3) Å as compared with value of 1.83(2) Å in the Rh complex. The average C-F and C-C lengths of 1.34 (3) Å and 1.50(4) Å respectively compare favourably with values 1.33(4) and 1.49(3) Å in the Rh complex. The $C = C$, fluorocarbon double bond length of 1.38(3) \AA is somewhat longer than the value of 1.30 \AA found in the Rh complex.

Einstein, Restivo 1 *Structure of (x-C!,H,) Fe (CO) (fafos)SnMe3*

All the intermolecular separations in Table IIIC correspond to van der Waals interactions; most of the shorter distances involve fluorine-fluorine or fluorinecarbon contacts.

The average of the twenty-four C-C distances within the phenyl rings is $1.39(3)$ Å identical to the accepted value for a phenyl ring. The carbon ring angles do not differ significantly from 120°. There are no significant deviations from planarity for the phenyl rings as seen from the mean planes in Table VI.

The Cyclopentadienyl Ring. The C-C lengths in the ring average to 1.44(4) Å which is larger than the corresponding mean value of 1.396(14) Å for $(\pi - C_s H_5$) $Fe(CO)_2$ SnPH₃. However, it compares favourably with the value $1.431(5)$ Å found from an electron diffraction study of ferrocene.³³ The mean carbon ring angle of $107.9(28)°$ is close to the regular penta-

(33) R.K. Bohn and A. Haaland, *J. Organometal. Chem.*, 5 470 (1966).

gonal value of 108°. The ring is planar, the maximum displacement of an atom from the plane being 0.03 \AA (Table VI).

The iron atom is 1.71 Å from the cyclopentadienyl ring similar to the value of 1.73 Å found in $(\pi - C_5H_5$ $Fe(CO)₂SnPh₃$ ¹⁰ The cyclopentadienyl ring is normal to the Fe-ring centroid axis. The mean Fe-C distance of $2.10(3)$ Å is consistent with the average value, 2.10 Å, found in $(\pi - C_5H_5)Fe(CO)_2SnPh_3^{10}$ but longer than in ferrocene³⁴ (2.045 Å).

Acknowledgment. The authors wish to thank Dr. W. R. Cullen for providing the sample and for his interest in the work. We gratefully acknowledge the financial support of the National Research Council of Canada.

(34) J.D. Dunitz, L.E. Orgel, and A. Rich, *Acta Cryst.*, 9, 373 (1956).